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Abstract—In a website fingerprinting attack, an eavesdropper
analyses the traffic between the Tor user and entry node of the
Tor network to infer which websites the user has visited. Some
recent work apply deep learning algorithms, however, most of
them do not fully exploit the packet timing information. In this
work, we propose a novel website fingerprinting attack based
on a two-channel Temporal Convolutional Networks model that
extracts features from both the packet sequences and packet
timing information. Our attack is proved to perform better
compared to the state-of-the-art attacks. Experiment results also
show that the timing information is very useful for classification.
Furthermore, we collect our own traffic traces between client and
entry node, and transform them into three extraction layers: TCP,
TLS and Tor cell layer, and meanwhile record Tor’s cell log at
the entry node. The experimental results show that the data of
the cell layer is the most divisible among the three layers. Based
on the experimental results, we conclude that the adversary at
the entry node has an advantage over the one who just listens
to traffic between client and entry node.

Index Terms—website fingerprinting attack, deep learning,
temporal convolutional networks

[. INTRODUCTION

As people’s growing awareness of privacy protection, in
order to avoid censorship or eavesdropping, many network
users tend to use privacy-aware communication tools that
protect user anonymity, such as Tor [1]. Tor is one of the
most popular anonymous communication tools and consists of
volunteer nodes that relay encrypted traffic between the client
and the web server, ensuring that no one node knows both the
source and destination. Tor protects user privacy by separating
the user’s identity from his browsing behavior.

However, unfortunately, an attacker can still guess which
specific websites a user has visited through traffic analysis
from Tor’s side channel [2]. A local, passive attacker can use
the meta-information of the traffic collected between client and
entry node of the Tor network, such as the size and direction
of the packet in the traffic sequence, to infer the user’s
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destination without decryption, which is known as Website
Fingerprinting attack (WF attack). The attacker collects the
client’s observable traffic traces as sequences of packets. By
classifying the client’s packet sequences, the eavesdropper
guesses which page the user is visiting.

Many studies have shown that website fingerprinting attacks
are feasible and effective on Tor. Most prior attacks [2]-[6]
use machine learning methods, that is, they extract manually
selected features of traffic traces and then classify them with
machine learning algorithms. However, manually character
engineering is usually difficult and expensive, and the accuracy
depends to a large extent on which features are extracted.
Therefore, when facing defences that attempt to hide these
particular features, these attacks may fail [5]. The work of
Rimmer et al. [7] pioneered the use of Stacked Denoising
Autoencoder (SDAE), Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) to automate feature
selection, confirming the feasibility and superiority of applying
deep learning to WF attacks. Since then, many work (such
as [8]-[11]) have further studied how to improve the deep
learning model to achieve higher accuracy.

Nevertheless, how to make better use of the various features
hidden in the traffic is still an open question. Firstly, the
importance of the time sequences has not been fully exploited
for a long time. A number of prior studies such as [6],
[7] didn’t utilize the packet timing information. Hayes et al.
[5] found that packet inter-arrival time statistics only slightly
increased the attack accuracy. Secondly, how to process and
parse the collected traffic traces is still an outstanding problem.
Generally, researchers can extract the traffic data in three
layers: TCP, TLS and Tor cell layer. Wang et al. [3] used the
cell layer and removed SENDME cell to get the best classifier
performance. According to Hayes et al. [5], their experiments
showed no consistent improvements for classification from
using one data layer over the other. Panchenko et al. [6] stated
that the best classification accuracy is achieved by extracting
data on the cell layer yet the differences are small and similar
results can be obtained using even the most basic TCP layer.

Consequently, in this work, in response to the first question,
we propose a novel and effective WF attack named 2ch-
TCN, namely two-channel TCN. We utilize not only direction
information but also time information of the cell sequences.



Experiment results show that our classifier can benefit greatly
from time information. Our attack is proved to perform better
compared to the state-of-the-art attacks and the time cost
is acceptable. And in response to the second question, we
collect our own traffic traces and transform them into the three
extraction layers: TCP, TLS and Tor cell layer. Moreover, we
collect direct cell logs by modifying Tor to record the basic
information of each cell, and use the direct cell logs as ground
truth to verify which layer provides the most information for
website fingerprinting and whether having real cell information
will give the attacker an advantage.
The key contributions of our work are as follows:

o« We propose a new website fingerprinting attack using
a two-channel TCN model that extracts features from
both the packet direction and time information. We eval-
uate our attack on previous public datasets [4] [7], and
compare to state-of-the-art approaches [6], [7], [9]. We
achieve a better accuracy of 93.73% on the dataset of [4]
and a better accuracy of 97.15% on the dataset of [7].

o We collect our own dataset and transform the traffic data
in three extraction layers: TCP, TLS and Tor cell layer.
We also record Tor’s cell log at the entry node selected by
the client during the visit. We make the generated dataset
publicly available!, allowing researchers to replicate our
results and systematically evaluate new WF attacks.

¢ Based on the dataset we collected, we conduct WF
attack experiments in three different data layers. The
experimental results verify that the data at the cell layer
can best benefit the classifier based on deep learning
algorithms. We conclude that how to accurately extract
cell sequence from traffic traces is still a problem that
needs to be solved, and the adversary at the entry node
with access to real cell information has an advantage over
the one who just eavesdrop on traffic between the client
and the entry node.

II. BACKGROUND AND RELATED WORK

In this section we first present the threat model for website
fingerprinting attack, and then we review the prior WF attacks
on Tor, including machine-learning-based attacks and deep-
learning-based attacks.

A. Threat Model

In this work, we adopt the same threat model as previous
studies. The adversary is a local, passive eavesdropper who
monitors the web browsing traffic between the victim and the
Tor network, as shown in Fig. 1. A local attacker does not
have to be physically close to the victim and he only has
limited observation capacity. He can have access to the link
between the victim and the entry node (like Adversary 1 in
Fig. 1), or own the entry node the client chooses to connect to
Tor (like Adversary 2 in Fig. 1). A passive adversary does not
modify the traffic flow in any way and only records the packets

IThe  dataset can be found on the URL:

https://github.com/Meiqiw/2ch-TCN/.
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Fig. 1. The Threat Model of Website Fingerprinting Attack

transmitted during the web browsing process. Therefore, the
adversary is hard to be detected. In realistic scenario, a website
fingerprinting attacker can be a router, an Internet Service
Provider (ISP), an Autonomous System (AS) operator, etc.
To simplify the problem, we assume that the client loads a
single website at a time without any other activity, such as
file downloading.

In the WF attack, the adversary chooses some websites
he interested in to monitor. He firstly visits each website
several times and collects the traffic traces for each visit.
Next, the attacker tries to build a website fingerprint for each
website with the help of some classification algorithm. The
collected traffic traces are labeled as their corresponding sites,
and features of these traces are selected using manual or
automated methods. The classifier is trained on these collected
traces. Finally, the attacker applies the classifier to the new
unlabeled traffic traces collected from the victim-initiated
communications and tries to identify which website the client
visits based on the output of the classifier.

B. Machine-learning-based WF Attacks

As Tor sends data in fixed-size (512-byte) Tor cells, attacks
utilizing unique packet length (such as [12]) become fruitless
on Tor. Thus, researchers turned to focus on features related
to packet ordering ( [2], [3], [13], [14]). For instance, Wang
et al. [4] extracted a wide assortment of features including
concentration of outgoing packets, bursts, etc. and utilized a
k-Nearest Neighbor (k-NN) classifier, achieving 95% accuracy
on 100 websites. Panchenko et al. [6] proposed CUMUL,
using an SVM and mainly taking advantage of cumulative
summations of packet sizes. This attack achieved similar
accuracy to Wang et al.’’s k-NN attack [4]. These attacks
have become the state-of-the-art WF attacks and are used to
benchmark other attacks.

These studies extract features of traffic traces manually
mainly based on intuition, human experience and expert
knowledge on how Tor and the HTTP protocol work. The
manual feature extraction is expensive and difficult. Addi-
tionally, it makes the performance of the classifier largely
dependent on the specific protocols or defenses. Therefore,
when the protocol or defense policy alters to hide these
extracted features, these attacks may fail.

It is worth noting that prior studies take more consideration
on the packet sequence than timing information. Wang et al.’s
k-NN attack [4] only added the mean and standard deviation



of the interpacket times into the 4,226-sized feature set. Hayes
et al.’s k-FP attack [5], which used random forests as feature
extractor and extracted 150 features from the traces, stated
that packet inter-arrival time statistics only slightly increase
the attack accuracy based on their assessment and ranking of
the importance of features.

Besides, which layer provides the most divisible information
for website fingerprinting is still an open question. Wang and
Goldberg [3] used the cell layer and removed SENDME cells
to get the best classifier performance. According to Hayes et
al. [5], their experiments showed that using an extraction layer
does not bring consistent improvement to the performance of
the classifier over the other layers. Panchenko et al. [6] stated
that the differences are small and using even the most basic
TCP layer can obtain similar results to the cell layer, and the
performance is not ideal when using data in the TLS layer.

C. Deep-learning-based WF Attacks

Recently, a few deep-learning-based WF attacks ( [7], [8],
[10], [11], [15]) have been proposed. Rimmer et al. [7]
proposed three models: SDAE, CNN and LSTM and proved
the feasibility of deep-learning-based website fingerprinting.
Sirinam et al. [8] presented Deep Fingerprinting (DF), using
a CNN model with a sophisticated architecture design and
achieving promising results on their own datasets, and it
became current state-of-the-art WF attack. All of the above
work utilized the packet direction information of the cell
layer, while not fully exploited the time information of the
packet. Bhat et al. [9] designed Var-CNN, a complicated
model using both the directional and timing information of the
traffic traces. Corresponding to the above two sequences, they
trained two optimized CNNs, named the direction CNN and
the time CNN, and then ensembled them to achieve higher
accuracy. They claimed that their attack worked well with
smaller training sets. While they didn’t get rid of the reliance
on manual extraction features. That is, they used 7 artificially
extracted features (such as the total number of packets, the
total transmission time, and so on) which they called metadata
so as to improve the performance of their model.

III. OUR 2CcH-TCN MODEL

In this section we first introduce a short background on
temporal convolutional networks, and then present details of
our two-channel TCN model.

A. Temporal Convolutional Networks

CNN is a specific architecture of neural networks, widely
used for natural language processing tasks, text classifica-
tion tasks, and sequence classification tasks. Its convolution
operations extract high-level statistical characteristics from
fragments of the input sequence. Some variants of CNN could
present different feature and be suitable for specific tasks.
For example, causal convolutions could capture the ordering
feature of sequence context without recurrent connection like
RNN. Another classic variant is dilated convolutions [16]. It
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Fig. 2. Temporal Convolutional Networks

expands the alignment of the kernel weights by dilation factor,
increasing kernel size and gaining a large receptive field [17].

Based on CNN and inspired by WaveNet [18], Bai et al.
[19] proposed TCN for sequence modeling, combining up
dilated convolutions [16] and causal convolutions, using 1D
Fully-Convolutional Network (FCN) [20] and residual block
[21] architecture. To compose a TCN model, Bai et al. stack
dilated causal convolution layer, weight normalization layer
[22], spatial dropout [23] and Rectified Linear Unit (ReLU)
[24] into a residual block, then stack multiple residual blocks
vertically. Fig. 2 shows a fundamental structure of TCN.
Combining up advantages of its components, TCN shows high
performance of parallelism, flexible receptive field size, stable
gradients and low memory requirement for training. More-
over, it outperforms prior to state-of-the-art methods in many
sequence modeling tasks over open datasets. Because it can
better extract the sequence information of the data compared
with ordinary CNN, and can better learn the characteristics
of long sequences compared with Recurrent Neural Network
(RNN).

B. Details of 2ch-TCN

We model WF attack task as a special sequence classifi-
cation task. With taking two kinds of sequence (direction or
size of packet/cell sequence and timing sequence) as input,
the model needs fitting and learning the high-level features of
sequence, then predict the catalogue of an unknown sequence
pair (which means a successful attack). For WF attack task, we
introduce a TCN-based model architecture, with two inputting
channels. As an excellent sequence model, TCN could extract
sequence ordering feature and high-level characteristics both
from direction sequence and timing sequence, and build rep-
resentation vector for specified task. We use fully-connected
layer to collect and combine the output of direction and timing
sequence representation model, then use a softmax layer to
map traffic sequence representation to the corresponding class
labels. To avoiding overfitting, we also use dropout mechanism
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[23] for the last dense layer. According to Hayes et al.
[5] and Bhat er al. [9], timing sequence should have been
insignificant. Benefit from TCN’s advantages, especially from
its stable gradients, timing sequence representation could be
trained efficiently with direction sequence at the same time,
which promotes each other’s convergence of gradient descent.
And due to the sequence feature extraction capability of
TCN, our model could gain outstanding results without any
artificial feature or metadata. The schematic architecture of
the proposed model is shown in Fig. 3.

As shown in Fig. 3, our model architecture is mainly
composed of TCN module. The direction model and timing
model share the same configurations. In order to fit large-scale
dataset as much as possible, we use 16 layers of stacks, one
of which is shown in Fig. 2. Then we set 16 filters with 8
size of kernel for each convolution layer in our model. For
dilated causal convolution layers, we provide a dilation factor
list: {1,2,4,8}, thus those layers would follow the list to set
dilation factor. Benefit from TCN’s superiority in capturing
ordering sequence features and preventing memory leaking,
we pad and truncate sequence into 5000 length. For training,
we use categorical cross-entropy as loss function and Adam
[25] as optimizer, with 0.001 learning rate.

IV. EXPERIMENTAL SETUP

In this section, we introduced datasets we used and the steps
for data collection and data processing.

A. Data Collection

Most of publicly available datasets provide packet sequence
information in the cell layer. In order to obtain the timing
information of the traffic traces and the complete traffic in TCP
layer and TLS layer, we collect data to form our own dataset
for experiments. In order to collect data more efficiently, we
use a distributed setup, utilizing 20 Virtual Machines (VMs) on
cloud environment provided by Vultr?. These virtual machines

Zhttp://vultr.com

are located in different countries including Japan, Singapore,
Australia, Germany, France, the Netherlands and the United
States, so as to ensure the diversity of traces. Each VM is
configured with 2 CPUs and 4GB of RAM. On each VM,
10 dockers are deployed, and each docker has a separate
Tor process (version 0.3.3.7). To access the Tor network, we
use Selenium’® (version 3.12.0) to control headless browser
Firefox (version 60.0.2), utilizing a SOCKSS proxy listened
by Tor. We recorded the traces of web pages leveraging
tcpdump?*. Web pages are given 60 seconds to load, and
upon loading the page, it was left open for an additional 3
seconds, after which the browser is closed and the Tor process
is killed. Next, t cpdump and Tor process are restarted. After
waiting for another 3 seconds, the browser is restarted and
ready to visit the next website. With this setup, a new circuit
is established each time the client visits a website. We also
perform page loading with no caches and time gaps between
multiple loads of the same web page as Wang and Goldberg
[3] recommended.

While recording the traffic trace, we also record cell logs on
the entry node chosen by the client by modifying Tor to record
the basic information of each cell, including the direction and
cell command, and use the direct cell logs as ground truth to
verify whether the cell layer can provide more information for
WF attack and whether having access to real cell information
will give the attacker an advantage.

It is worth mentioning that we increase the randomness of
the data by maximizing the differences in the web browsing
environment. Our data collection method ensures that a new
circuit is established for each visit, and each traffic trace
contains the process of circuit construction. The circuit di-
versity of our dataset is more abundant than traces in the
realistic scenario where the adversary implements a targeted
attack on a single victim. Using our data for training makes
the model more universal, making the attack applicable to
any Tor user. Undoubtedly, this will increase the difficulty
of WF attacks compared to using the previous idealized data
collection method. We also hope to observe the performance
of our attacks and the state-of-the-art attacks under such
unfavorable conditions for attackers.

B. Dataset

In total, we evaluate our attack in comparison with state-of-
the-art methods on three different datasets: Wang et al.’s k-NN
dataset [4] (referred to as Wang14), Rimmer et al.’s dataset [7]
(referred to as Rimmerl8) and our own dataset (referred to as
MultiLayer20). In this subsection we describe the details of
these datasets and explain why we choose them.

1) Wangl4: The Wangl4 dataset contains 100 websites
with 90 instances for a closed-world evaluation. These 100
monitored pages was compiled from a list of blocked websites
in China, the United Kingdom, and Saudi Arabia. This dataset
has been well studied by many prior researches [4]-[6], [15].

3http://www.seleniumhg.org/
“http://www.tcpdump.org/



Traces in Wangl4 are cell sequences, including information
about the direction of each cell and the timestamp when each
cell is captured. They collected data in batches, tried to use
each circuit as long as possible, and maintained the same
circuit in one batch. In addition, they used one client located
at a fixed IP to collect all the traces.

2) Rimmerl8: The Rimmerl8 dataset consists of 900 web-
sites, with 2,500 valid network traces each. Their monitored
websites are sourced from the homepage of 1,200 of the most
popular websites according to Alexa [26]. Rimmerl8 is the
largest WF dataset ever gathered to date, and it was collected
with a distributed setup by 240 worker threads of 15 VMs. The
collection was divided into four iterations, with each iteration
split up into 30 batches. The traces in Rimmerl8 are also from
cell layer, but only contains the direction of each cell without
any timing information. In order to facilitate comparison with
Wang 14, we use a subset of Rimmerl8 containing 100 websites
with 2,500 instances each.

3) MultiLayer20: Following our data collection method, we
collected up to 3,000 network traces of 2,000 websites (from
Alexa Top websites and Tor hidden services®, each with 1000
websites). Similar to the previous work, after data collection,
we filtered out invalid traces and outliers, which caused by
timeout or crash of the browser or Selenium driver. Then we
removed websites with a high amount of invalid traces from
our dataset. Finally, we balanced our dataset to ensure every
site has the same number of traces. After completing the above
operation, we eventually obtained MultiLayer20, consisting of
two subsets of monitored web pages: (i) 2,300 instances from
each of the 500 top Alexa monitored web pages and (ii) 1,400
instances from each of 850 popular Tor hidden services. Our
dataset contains both direction and time information of each
packet. Besides, we also transform the traffic data in three
extraction layers: TCP, TLS and Tor cell layer, which we will
explain in detail in the next subsection.

C. Data Extraction and Processing

As shown in Fig. 4, at the application layer, Tor embeds
the encrypted data into a fixed-size (512-byte) packet, which
is called a cell. And the cell is further embedded into the
TLS record. Multiple cells can be grouped into a single TLS
record. Finally, in the transport layer, TLS records are typically
fragmented into multiple TCP packets, the size of which is
limited by the Maximum Transmission Unit (MTU). Note that
several TLS records can be within a single TCP packet.

In order to observe the performance of various methods
at different data layers, we parse the original captured pcap
files into TCP packet sequences and TLS record sequences,
with the help of Tshark® (version 1.12.1). Then we extracted
cell sequences from the TLS record sequences following the
method proposed by [3]. Serving as ground truth, the cell logs

SA hidden service is a website users visit uses Tor technology to stay
secure and anonymous, which is accessed through its onion address. As the
prior work, we chose hidden services based on the list provided by the .onion
search engine http://www.ahmia.fi/.

Shttps://www.wireshark.org/docs/man-pages/tshark.html
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Fig. 4. Layers of Data Transport in Tor

were converted into the same form as the cell sequences. In
Section V-B we provide an evaluation of the different layers
of extraction and discuss their impact on classification.

V. EVALUATION AND DISCUSSION

In this section we evaluate our WF attack 2ch-TCN in
Tor. In Section V-A, we compare our approach to state-of-
the-art attacks on previous public datasets and show that our
method is superior in classification accuracy. By comparing
the accuracy, loss and evaluation time of several attacks with
a growing number of training epochs, we show that the packet
time information not only helps the classifier achieve higher
accuracy, but also improves the convergence speed of the
model. In Section V-B, we reevaluate prior work and our attack
on our dataset. By comparing the performance of attacks in
the three data extraction layers, we conclude that the cell layer
does benefit the classifier and performs better than the other
two layers.

A. Comparison with State-of-the-art Attacks

In this subsection, we compare the performance of our novel
attack to four state-of-the-art approaches: CUMUL proposed
by Panchenko et al. [6], SDAE and CNN proposed by Rimmer
et al. [7] (In order to avoid confusion with common neural
network models, we will refer to them as Rimmer-SDAE and
Rimmer-CNN respectively), and Var-CNN proposed by Bhat
et al. [9]. We choose these attacks for comparison because the
CUMUL classifier has been proven by [7] to be superior to
previous machine-learning-based methods, and the other three
methods are most representative deep-learning-based methods
at present with promising performance.

We implement our model with Keras [27], which using Ten-
sorflow” as backend. We practise deep learning experiments on
a platform that has two Nvidia Tesla P100 GPUs with 24 GB
GPU memory, which can make high parallelism performance
of CNNs due to cuDNN primitives [28]. We use the default
parameter settings and perform each experiment three times
and present the results as an average.

Among the above four state-of-the-art methods, only Var-
CNN utilizes time information. We adopt a single-channel
TCN model (referred to as TCN-dir) that only makes use
of the direction information and correspondingly, we choose
the direction CNN of Var-CNN (referred to as Var-CNN-dir)
for comparison. We first compare the performance using the
Wangl4 dataset and the Rimmerl8 dataset. For Wangl4, we
use 60 instances of each website for training and 30 instances

https://www.tensorflow.org/



TABLE I
ACCURACY(%) OF THE FIVE ATTACKS ON Wangl4 AND Rimmerl8

Wangl4  Rimmerl8

CUMUL 91.382 95.43b
Rimmer-CNN 71.43 91.23
Rimmer-SDAE 87.78 95.50
Var-CNN-dir 93.20 97.01
Var-CNN 93.33 -
TCN-dir 92.60 97.15
2¢h-TCN 93.73 -

2Based on Experiment Results of [6].

bBased on Experiment Results of [7].
for testing. And for RimmerlS8, we use 2,200 traces of each
website for training and 300 traces for testing. In this scenario,
the accuracy is a suitable metric to measure the performance
of classifiers, which is defined as the proportion of correct
classifications (true positive and true negative) among the
total number of traces identified. So we use the classification
accuracy to define the effectiveness of the attacks.

The results for both datasets are shown in TABLE I. As
we can see, with the number of traces per site increasing, all
classifiers’ performance is improved. This shows that these
attacks are practically feasible for larger scale of traffic data.
Moreover, collecting more traffic traces for each site is benefi-
cial to the classification accuracy of these classifiers, as more
adequate data can help the models understand the features of
packet sequences more thoroughly. When the number of traces
of each website is small, Rimmer-CNN and Rimmer-SDAE do
not perform well. Consistent with the experimental results in
[7], we observed significant improvements in these two attacks
when amount of traces grows. We conclude that their models
have a strong dependence on the amount of data. In contrast,
the machine-learning-based CUMUL, the deep-learning-based
Var-CNN and our method can still perform well even when
the number of instances on each website is limited. Compared
to Var-CNN, our model performance is more affected by the
number of instances of each website. Our model outperforms
than state-of-the-art approaches when there are enough traffic
traces on each website.

Since Rimmerl8 does not contain time information, we only
use the dataset of Wangl4 to compare the result of Var-CNN
with that of our model. It can be seen that after using the time
information, the accuracy of our model increases far more
greatly than Var-CNN, from 92.60% to 93.73%. However,
the Var-CNN model does not benefit much from the time
sequences, showing the accuracy of 93.30% with an increase
of only 0.1%. This shows that our model can better learn the
features of time sequences, so that the gain brought by utilizing
time information is greater. We conclude that when taking the
packet time information into consideration, our model stands
out and shows the highest accuracy compared to state-of-
the-art attacks including machine-learning-based methods and
deep-learning-based methods.

Next, we compare the accuracy and loss of our model and
the most promising state-of-the-art approach, Var-CNN, with
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Fig. 5. Convergence Speed of Our Model and Var-CNN on Wangl4

a growing number of training epochs. The result is shown in
Fig. 5. Obviously, our model can rapidly improve accuracy
and reduce loss in the early stage of training. We conclude
that our model converges much faster than Var-CNN, which
improves the efficiency of training.

It is worth noting that Var-CNN uses two CNN models and
ensembles them, in which they need to train one CNN after
another. This undoubtedly increases the time cost of training,
with a tiny increase in accuracy. By comparison, our model
only needs to be trained once. In addition, Var-CNN still
relies on manual extraction of metadata, while our attack relies
entirely on neural networks to automatically extract features.
Therefore, we can draw a conclusion that our model can better
learn the characteristics of the traffic traces with the help of
both the packet direction information and timing information.

B. Experiment Results Using Our Dataset

In this subsection, we evaluate three most promising
deep-learning-based attacks: Rimmer-SDAE, Var-CNN-dir and
TCN-dir on our dataset MultiLayer20. For comparison pur-
poses, we use models that do not use time information. For
MultiLayer20, we use 2,000 instances for training and 300
instances for testing. Our dataset consists of traffic traces in
three extraction layers: TCP layer, TLS layer and the cell
layer, in addition to the cell log recorded at the same time,
so we can find out which layer is most useful for WF attack
through experiments, and compare the difference between cell
sequences extracted from TLS records by Wang’s method
[3] (referred to as Wang’s cell) and real cell sequences in
experimental results.

The results are shown in TABLE II. As we can see, the
classification of all attacks has dropped. The reason is as
mentioned above: in the process of collecting data, we ensure
that a new circuit is established for each visit, which increases
the randomness of the data. Our classifier still performs well
compared to the other two classifiers, achieving the highest
accuracy of 86.31% in the cell layer, and in the other two
layers, our model performance is close to Var-CNN, although
no time information is used. This implies that our model is
very stable and can handle the situation with a wide variety
of circuits in traffic traces.

By comparing the results of these three approaches using
data in different extraction layers, we observed that the data
from the cell layer does yield the best results. Theoretically,
the Tor cell is a more consistent and basic unit than TCP
packet and TLS record. Thus, the cell layer can provide



TABLE II
ACCURACY(%) OF ATTACKS ON MultiLayer20 IN THREE LAYERS

TCP TLS  Wang’s Cell Real Cell
Rimmer-SDAE ~ 44.87  41.97 70.66 79.28
Var-CNN-dir 7635  67.61 77.59 85.72
TCN-dir 73.87 6741 79.78 86.31

more divisible data for the classifiers. The worst classification
accuracy is achieved by extracting data on the TLS layer,
which is consistent with the experimental results of [6].

Another important finding of the experiment is that when
using the real cell layer, the classification accuracy of all
approaches is significantly improved by around 8%. This
indicates that cell sequences converted by means of [3] may
have lost some characteristic information compared to real
cell sequences. As a result, how to accurately extract cell
sequence from traffic traces is still a problem that needs to be
solved. Meanwhile, we draw the conclusion that the adversary
at the entry node with access to real cell information has an
advantage over the one who just eavesdrop on traffic between
the client and the entry node.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel website fingerprint attack,
2ch-TCN, that extracts features automatically from both the
packet direction and time information. Experiment results
show that our classifier can benefit greatly from time informa-
tion. Our attack is proved to perform better compared to the
state-of-the-art attacks with an acceptable time cost. Besides,
we collect our own traffic traces and transform them into the
three extraction layers. We conclude that the data of the cell
layer is the most divisible among the three layers. Another
interesting finding is that the attacker at the entry node with
access to Tor’s real cell information can have a great advantage
over the one who just eavesdrops on the client and the entry
node.

We see a bright future for applying deep learning to WF
attacks. We will further improve our model to increase the
classification accuracy and apply it to more complex scenarios,
such as where users accessing multiple websites at the same
time. At the same time, how to defend against deep-learning-
based attacks is also a question worth pondering. Besides, how
to make the data extracted from the traffic traces closer to the
real cell is also an urgent problem to be solved.
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